If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c^2=20
We move all terms to the left:
4c^2-(20)=0
a = 4; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·4·(-20)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*4}=\frac{0-8\sqrt{5}}{8} =-\frac{8\sqrt{5}}{8} =-\sqrt{5} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*4}=\frac{0+8\sqrt{5}}{8} =\frac{8\sqrt{5}}{8} =\sqrt{5} $
| c/2+13=16 | | 44=17+-9s | | 14=-y+256 | | 2x-5=5x+20 | | 64x2=49 | | t-36=54 | | 44=17+9s | | x*0.15=10000 | | x*0.15=10,000 | | 6x+(3x-7)=29 | | 20x-3=4x+1 | | r^2-12r+15=0 | | 44=17=-9s | | 6x+(3x-7=29 | | 9x—64=16 | | 3x+(3x-7)=29 | | 3x+(3x-7=29 | | 9x—-64=16 | | 20=3g | | 3(d+5)-3=6 | | 32h/7=9 | | 2x+15+90=180 | | 3x+8=4x-4=60 | | -11x=-39 | | 23x-15=3x+8 | | x/33=1.65 | | 0.07+0.05(17,000-x)=670 | | 6(2-4)+1=3s+7 | | 4x+7=(4x+7) | | 6x-26=4x+7 | | 32x2=7 | | 2x+47=x+83 |